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potential cp. The component due to the piezoelectric effect and that also has an infinite 
propagation velocity, is not contained explicitly in the sum Y@) and is determined after 

solving problem (1.2)-(1.5). 
In conclusion, we note that the method described enables the problem to be solved for 

more complex electrical boundary conditions as compared with (1.4). In place of the values 
of the potentials on the electrodes in considering applied problems, the magnitudes are often 
given for the currents through them or the characteristics of the outer electrical loops. In 
these cases, unknown values of the potentials are introduced into the boundary conditions 
(1.4) and are then determined from the equations for the currents in the outer loops or the 
charge conservation conditions, 
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HYPERSIN~UlAR INTEGRALS IN PLANE PR~3LE~S OF THE THEORY OF ELASTICITY* 

A.M. LIN'KOV and S.G. MOGILEVSKAYA 

This Paper is devoted to the solution of plane problems of the theory of 
elasticity by the method of discontinuous displacement using finite-part 
integrals fFPIf + !hO different integral equations (a real one and a com- 
plex one) with FPI's are obtained for the plane of a body with cracks. 
This opens the way for using arbitrary approximations of displacement 
discontinuities. The article contains integral formulae for FPI's used 
in the approximation of displacement discontinuities by polynomials of 
any order for internal elements and by special functions accounting for 
the asymptotic behaviour for the boundary elements. Therefore, 
prerequisites for increasing the accuracy of computations are created. 
The results of numerical experiments carried out indicate that there is 
a sharp increase iby two orders of magnitude) in the accuracy of the 
solution of the crack problem in which the integral formulae in question 
are used. 
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During the last decade finite-part integrals (FPI), which were introduced by Hadamard 
/l/, have become a useful tool in solving problems in the mechanics of continuous media 
/2-a/, particularly in cases where the functions being sought undergo discontinuities on some 
surfaces (lines). For the three-dimensional problem of a crack in a rigid body, the high 
effectiveness of FPI's was shown in /4, 81. FPI's are also useful in plane crack problems. 
It suffices to mention that the method of displacement discontinuities /9/, which is widely 
used in computations, consists essentially in applying FPI's to a simple piecewise constant 
approximation of the crack and the displacement discontinuity along the crack. However, the 
integral equation solved by the approximation was not derived in /9/. This made it difficult 
to use more accurate approximations. Only recently have some articles appeared in which 
displacement discontinuities are expressed in terms of integral formulae /lo, ll/. It has 
been proved that the accuracy increases substantially in this case (sometimes by an order of 
magnitude). However, the question concerning arbitrary approximations, and, in particular, 
approximations in which the asymptotic behaviour of displacement discontinuities at the ends 
of the crack is taken into account, has remained open. This has become all the more pressing 
since a rigorous proof of the applicability of FPI's to the boundary elements of a 
rectilinear crack was given in /12/. 

1. We consider an unbounded domain with a cut along a line I? (see the figure). We fix 
a direction of motion along I? and we choose a normal vector n pointing to the right-hand 
side of the direction. We also adopt the convention that the limiting values of a function 
as the argument approaches l? from outside (inside) with respect to the normal vector will 
be marked by a plus (minus) sign. 

Suppose that there are forces of the same magnitude but 
in opposite directions acting on the edges of the cut. In 
this case, if the normal vector is fixed, then the vector o, 
representing the forces is continuous and equal to the given 
vector ono(u"+ = uo- = cJna on I). 

At an internal point of r the displacement vector can 
be represented by a double-layer potential 

ui (X) = - S w~I (x, y) Auj (y) d,r, x E r 
r 

(1.1) 

\f 
For an isotropic body 

Wil (x, Y) = - &[ [ * nj (Y) $ + Q(Y) -& + S,&] ln f - (1.2) 
1 

1 ~+w--lnR) 
~2 = (xi - pi)fd, a/an = nkalask 

where v is Poisson's ratio, &I is the potential density vector, and 6ij is the Kronecker 
delta. It is understood that summation is carried out whenever a Latin index is repeated 
twice. The minus sign is written in front of the integral in (1.1) in order that some special 
cases of the expressions that follow are identical with the formulae that are traditionally 
used. All subsequent considerations remain valid also for the three-dimensional case when J? 
is a surface. The only difference is that ln(l/R) in (1.1) is replaced by 1/(2R) and the 
function RZ - 2Raln R is replaced by 2R /5, 7, 8, 13/. 

By virtue of the properties of the double-layer potential /14/, Au represents the dis- 
continuity of the displacement vector on r: Au = u+ - u-. The displacements u(x) outside 
r satisfy all equations of the theory of elasticity. From these equations we find the 
stresses Oi j Cx) and the forces oni (x) acting on a unit surface element with the normal 
vector n (x): 

a<j (x) = - S &jk (x, y) Auk (y) d,r, x E r 
r 

(Jni (x) = - S Fnik (x, Y) Auk (Y) dJ, x E r 
r 

where for an isotropic body (E is the modulus of elasticity) 
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+ + ‘1, +j ‘& ] In $ - +- ar,a&t?n (RS - 2R2 In A)) 

Fair (~1 Y) = &R (~9 Y) nl(x) = - 

%(x) nk(Y)+ -i- F nJ(x)jni(u) 

(Relation (1.2) is used). 
Potential (1.4) is continuous on r /13/. Thus, we only need to require that the limit- 

ing values of 4(x) should be equal to the vector on0 representing the forces given on I?. 
As a result, we get the equation 

which can also be written in the form 

- V. f. S Fnjk (x0, y) AUR (Y) d$’ = %o (x0)7 xo E ’ (W 
r 

where the integral on the left-hand side is understood as a FPI. On the arc I? we choose an 
interval r0 containing x0. If an integral over r0 of a term of the form AuR (y)iRZ appears 
in the integral formulae, then the FPI can be evaluated by substituting the limits of inte- 
gration representing the ends of r0 into the corresponding formal expression. Otherwise, 
we subtract and add an expression of the form AuR (x,)I.R' and we formally evaluate the 
integral of l/Ra in which we substitute the limits of integration /3, 8/. In this case the 
integral containing the difference Au, (Y) - An, (x0) is understood as the principal value in 
the Cauchy sense. 

The proof that (1.5) and (1.61 are equivalent is carried out by repeating the proofs 
given in 12.f for the three-dimensional problem. Rere the theory of pseudodifferential oper- 
ators is used /IS/. The result also remains valid in the space of functions with derivatives 
of class H* (according to the classification given in /16/j. 

2. The other equation with FPI's can be obtained by using the limiting integral equation 
with complex variables /17/ 

I ’ T\ "'("'d~+k~w'=f,(t), tEr 7--t 
r 

(2.1) 

t = .x1 + iq, t = y, + iy*, fl (t) = a& -?i- ia,& k, = $ -i- k, 

w’ (t) = -g- , 
E 

w = -Au,, 4(1--3) Au = Au, + iAu, 

A bar above a symbol denotes the complex conjugate. The normal vector n points to the right- 
hand side of the direction of I?, z is a tangent vector pointing in this direction (see the 
figure), and a& and o& are the components of the vector representing the forces given 
on r. 

The function w' 0) (like w (t)) represents the difference between the limiting values 
of a function that is holomorphic in the complement of I'. Thus /17/, 

(2.2) 

where the last equality in the chain is proved in exactly the same way as in /3/. 
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Substituting (2.2) into (2.1) and using the fact that k,w’ can be integrated by parts, 
we get 

Finally, we obtain the complex equation with FPI's 

(2.3) 

(2.4) 

The advantage of this equation is that to solve it using computers, we can use an approximation 
by functions of one (complex) variable (for example, by Lagrange polynomials L* (a) with 
nodes at zk = r,, + &k, where k = 1, ., n). 

In the special case where r is a section ]a, bl of a straight line, we have k,w = 0. 
In this case, if the &-axis is parallel to the normal vector n, then 7 -t = z1 - y, and 
dT = --dy,. Eq.(2.4) takes the form 

(-- l)k-’ E 4n(l- v") v. f. i &%dyl = &, k=l,2; a<z,<b 
a 

(2.5) 

For a rectilinear crack with a normal discontinuity (onlo = 0; k = 2), Eq.(2.5) was 
obtained in /3/ (there is an insignificant difference consisting in that f = -Au,12 and 
p = -unzo are used in /3/ instead of Au, and O"ZO ). 

Compared with a singular equation of the type (2-l), Eq.(2.4) with FPI's has the useful 
feature that it involves exactly those mechanical quantities that are a matter of interest in 
connection with solutions of applied problems, namely the displacement discontinuities and 
the forces. 

3. It follows from the results of Sect.1 that the integral formulae over a section of a 
stright line are useful for evaluating the.FPI's in (1.6). Let us consider the integral over 
an interval [a, b] 

J(x) =v. f. [ +& dE 
a 

(3.1) 

Let the values fk of f(z) be given at n points zk belonging to this interval. The points xp 
serveas the. nodesof the integral formula. To approximate f(x) it is convenient to use the 
functions 

i;, (Xi) = ( :,I ; 5: (i, k = 1 7 * . -1 n) 

Then 

and substitution of (3.2) into (3.1) yields the integral formula 

(3.2) 

As the shape functions for the internal elements of F we can use the Lagrange polynomials 

G,(z) = Lk (5) = ii s 
itk .h 

(3.4) 



Then, substituting (3.4) into (3.3), we get 

Al, (x) = d-’ (iI&,_, + u,M,-~ + . . . + u,~M~) 
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13.5) 

Here 

M, = v. f. b E"dS 
s 
m =ss"llnI~I + 

C,"(- l)h++z 

a* = Xa,Xj, . . ., U,_l = (- i)n-lckXi. d = fi (xk - Xi) 
mdfk i+k 

For elements adjacent to the ends of r it is best to use an approximation that takes into 
account the asymptotic behaviour of j(x). Usually, the displacement discontinuity vanishes at 
the end-points and it tends to zero in such a way that it is proportional to J/F (where r 

is the distance from the end-points). Thus, we can assume that the shape functions for the 
elements adjacent to the ends of r are the following: 

C, (x) = f(r - a)i(r, - a)& (Z) (for the left end) (3.6) 

Ck (2) = I/(b - x)l(b - rk)& (x) (for the right end) (3.7) 

By substituting (3.6) and (3.7) into (3.3) and applying the integrals, we obtain the same 
formula as (3.5) except for the fact that d and the moments are replaced by 

for the left end, and by 

s k-? 

c,“c,“__, (_ I)k xs-k (x _ b)k-2-n: @’ - ‘) 
mm+‘/, 

M, = 
m + a/z 

+ x”B, + SX~-~B 19 
k=Z ni=0 

,Zj 
0 

= I/b= 1 - - 

-+ 2vb--r n--t 
--==-A, RI=--2I/b-a-fb--A,, 

h = lJ1 d=l/6=$ (xii-Xi) 
i*k 

for the right end. 
There is no need to give the numerical values of the weights -4, for specific values of 

n, 2, a, and 6, since the above analytic expressions are very simple, and direct computer 
calculations based on these expressions can be carried out more easily and with greater 
accuracy. 

The given formulae with the real coordinate replaced by the complex coordinate t =x1 + ix, 
can also be used to solve the complex equation with FPI's (2.4). Here even the above-mentioned 
advantages of the complex formulae manifest themselves: if (2.4) is used, it is not necessary 
to assume that an element of I' is rectilinear or that it can be represented by a function of 
a section of a straight line, and it is sufficient to take the complex coordinates 
an element Of p as the nodes xk. 

zk of such 

4. The equations with FPI's and the integral formulae obtained in the present paper 
make it possible to increase the accuracy of computations of displacement discontinuities. 
an illustration we present the results of numerical experiments carried out for the problem 

As 

studied in /9/ concerning a rectilinear crack with constant internal pressure 
0). The crack runs along the interval [--1,ll. 

en, O= -~(a,,~~= 

The problem has an analytic solution /18/ 

(4.1) 
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which enables the accuracy of the solution of (2.4) to be checked. 
In the case in question, Eq.(2.4) has the form (2.5) with k= 2. To obtain the solution 

of (2.51, partitions of the interval [--1.11 into various numbers of elements of the same 
length and various approximations within the elements were used. However, in order for the 
results to be comparable, the total number of nodal points was fixed to be either 15 or 30. 

The approximating polynomials used within the elements were of the following order: a) 
zero (n = 1), b) two (n= 3), and c) four (n= 5). Moreover, we used an approximation by poly- 
nomials of the second order for the internal elements combined with a term for the boundary 
elements in which the asymptotic behaviour was taken into account (c,= l/l&z, case d). Below 

we list the percentage errors of computations (with 15 nodal points) with respect to the exact 
solution (4.1) for each of the four cases: 

z 0.1 a..3 0.4 O..i 0.7 0.8 0.9 

;: 
3 .4 3.7 4.0 4.6 7.1 9.5 24 

6, % 1.8 1.9 2.1 2.4 a.5 Ii.., 14.7 
: 

:*: 
0:038 0.036 I.8 0.040 1.8 :::3 ;:;G 4.4 0.23 6.3 0.19 13.0 

0.16 

The results indicate that the accuracy increases significantly as one passes from the 
piecewise-constant approximation to the second-order approximation. Any further improvement 
in the accuracy as the order of the polynomial is increased to four no longer manifests itself 
so strongly (case c). But even for the second-order approximation for the internal elements, 
the inclusion of the asymptotic behaviour of the function being sought over the boundary 
elements introduces a very substantial contribution (case d). In this case the error is 
reduced by two orders of magnitude. 

In cases a, b, and c, only the central elements are affected as the total number of nodal 
points is increased to 30. Near the ends the errors remain almost unchanged. Only in case 
c (taking the asymptotic behaviour into account) the errors are significantly reduced compared 
with the case of 15 nodal points, namely by a factor of three for the central elements of the 
crack, by a half for 5 = 0.7, and by 13% for 5= 0.9. 

It follows from these results and from a number of other analogous numerical experiments 
that increasing the order of the approximation and the total number of nodes alone does not 
ensure that there will be any increase in accuracy near the ends of the contour. Only the 
use of special boundary elements that take into account the asymptotic behaviour of the func- 
tion provides the means for considerably reducing the errors. The introduction of such 
elements also has a positive effect on the accuracy of computations at the points lying far 
from the ends. This is in complete agreement with the theoretical analysis (/19/, p.488). 
Moreover, it is quite sufficient to use the aproximation by polynomials of the second order 
for the internal elements. 
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ON THE STRESS-STRAIN STATE NEAR A THREE-DIMENSIONAL CRACK 
IN A TWD-SHEETED SURFACE* 

V.V. SIL'VESTROV 

A limit scheme of a two-sheeted Riemannian surface is used to illustrate 
special features encountered in the course of the study of the 
asymptotic form of the stresses and displacements near the edge of a 
three-dimensional crack. The fundamental first, second and mixed 
boundary-value problems axe formulated on this surface by analogy with 
the case of a single plane, and are solved explicitly by guadratures by 
reducing them ta a Riemann boundary-value matrix problem with a constant 
coefficient. The sheets of the surface are in a generalized plane 
stress state and have, generally speaking, different stress constants 
and different thicknesses. A scheme for investigating the stress-strain 
state of another two-sheeted construction different from the Riemannian 
surface is elucidated briefly. 

A real crystal can naturally be interpreted within the framework of the classical theory 
of elasticity as a set of elastic interacting planes corresponding to the layers of atoms. 
Various defects and dislocations 11, 2/ connect the similar surfaces, and it is therefore 
best to use the methods of the theory of elasticity to 
with prescribed types of dislocations. 

multisheeted surfaces when dealing 

7. "pypes of Co?ls~Wtiorts. Let 6,, E, be homogeneous. elastic, isotropic infinite thin 
plates with cuts along the same segment Lj = fajv bjI fj = 1, 2, . . ., a) OE the real x-axis. We 
shall assume that the plate E,(k = i,Z) has a thickness of A, and is characterized 
elastic constants Pk, xiu = (3 - v%)/(l + v~), where pk 

by 
is the shear modulus and v2 is Poisson's 
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